2. Circuit Board Heat Dissipation Method
2.1 High heat-generating components plus radiator and thermal board
When a small number of components in the PCB generate a large amount of heat (less than 3), a heat sink or heat pipe can be added to the heating device. When the temperature cannot be lowered, a heat sink with a fan can be used to enhance heat dissipation effect. When the number of heating devices is large (more than 3), a large heat dissipation cover (board) can be used, which is a special heat sink customized according to the position and height of the heating device on the PCB or a large flat heat sink cut out different component height positions. The heat dissipation cover is integrally buckled on the surface of the component, and it is in contact with each component to dissipate heat. However, the heat dissipation effect is not good due to the poor consistency of height during assembly and welding of components. Usually, a soft thermal phase change thermal pad is added on the surface of the component to improve the heat dissipation effect.
2.2 Heat Dissipation Through PCB Board
At present, the widely used PCB boards are copper-clad/epoxy glass cloth substrates or phenolic resin glass cloth substrates, and a small amount of paper-based copper-clad boards are used. Although these substrates have excellent electrical properties and processing properties, they have poor heat dissipation. As a heat dissipation method for high-heating components, it is almost impossible to expect heat to be conducted by the resin of the PCB, but to dissipate heat from the surface of the component to the surrounding air. However, as electronic products have entered the era of miniaturization of components, high-density mounting, and high-heating assembly, it is not enough to rely on the surface of a component with a very small surface area to dissipate heat. At the same time, due to the extensive use of surface mount components such as QFP and BGA, a large amount of heat generated by the components is transferred to the PCB board. Therefore, the best way to solve the problem of heat dissipation is to improve the heat dissipation capacity of the PCB itself, which is in direct contact with the heating element, through the PCB board to transmitor emit.
2.3 Use Reasonable Wiring Design to Achieve Heat Dissipation
Because the resin in the plate has poor thermal conductivity, and the copper foil lines and holes are good conductors of heat, increasing the residual rate of the copper foil and increasing the thermally conductive holes are the main means of heat dissipation.
To evaluate the heat dissipation capacity of the PCB, it is necessary to calculate the equivalent thermal conductivity (nine eq) of the composite material composed of various materials with different thermal conductivity-the insulating substrate for the PCB.
2.4 For equipment that adopts free convection air cooling, it is best to arrange the integrated circuits (or other devices) vertically or horizontally.
2.5 The devices on the same printed board should be arranged as far as possible according to their calorific value and degree of heat dissipation. Devices with low calorific value or poor heat resistance (such as small signal transistors, small-scale integrated circuits, electrolytic capacitors, etc.) should be placed in the uppermost flow (at the entrance) of the cooling airflow, and the devices with large heat generation or good heat resistance (such as power transistors, large-scale integrated circuits, etc.) are placed at the most downstream of the cooling airflow.
2.6 In the horizontal direction, high-power devices are arranged as close to the edge of the printed board as possible to shorten the heat transfer path; in the vertical direction, high-power devices are arranged as close as possible to the top of the printed board to reduce the influence of temperature of other devices when these devices are working.
2.7 The temperature-sensitive device is best placed in the lowest temperature area (such as the bottom of the device). Never place it directly above the heating device. It is best to stagger multiple devices on the horizontal plane.
2.8 The heat dissipation of the printed board in the equipment mainly relies on air flow, so the air flow path should be studied during the design, and the device or printed circuit board should be reasonably configured. When air flows, it always tends to flow in places with low resistance, so when configuring devices on a printed circuit board, avoid leaving a large airspace in a certain area. The configuration of multiple printed circuit boards in the whole machine should also pay attention to the same problem.
2.9 Avoid the concentration of hot spots on the PCB, distribute the power evenly on the PCB board as much as possible, and keep the PCB surface temperature performance uniform and consistent. It is often difficult to achieve strict uniform distribution during the design process, but areas with too high power density must be avoided to prevent hot spots from affecting the normal operation of the entire circuit. If possible, it is necessary to analyze the thermal performance of the printed circuit. For example, the thermal performance index analysis software module added in some professional PCB design software can help designers optimize the circuit design.
2.10 Place the devices with the highest power consumption and heat generation near the best position for heat dissipation. Do not place high-heating devices on the corners and peripheral edges of the printed board, unless a heat sink is arranged near it. When designing the power resistor, choose a larger device as much as possible, and make it have enough space for heat dissipation when adjusting the layout of the printed board.
2.11 When connecting high heat dissipation devices to the substrate, the thermal resistance between them should be reduced as much as possible. In order to better meet the thermal characteristics requirements, some thermal conductive materials (such as a layer of thermally conductive silica gel) can be used on the bottom surface of the chip, and a certain contact area can be maintained for the device to dissipate heat.
2.12 Connection between device and substrate:
(1) Try to shorten the lead length of the device
(2) When selecting high-power devices, the thermal conductivity of the lead material should be considered. If possible, try to choose the largest cross section of the lead;
(3) Choose a device with more pins
2.13 Package Selection of Devices:
(1) When considering thermal design, pay attention to the package description of the device and its thermal conductivity.
(2) Consideration should be given to providing a good heat conduction path between the substrate and the device package.
(3) Air partitions should be avoided in the heat conduction path. If this is the case, heat-conducting materials can be used for filling
XPCB Limited is a manufacturer specializing in the production of high-precision double-sided, multi-layer and impedance, blind buried vias, and thick copper circuit boards. The products cover HDI, thick copper, backplanes, rigid-flex, and buried capacitance. , Golden Finger and other types of circuit boards, which can meet the needs of customers for various products.
XPCB Limited is a premium PCB & PCBA manufacturer based in China.
We specialize in multilayer flexible circuits, rigid-flex PCB, HDI PCB, and Rogers PCB.
Quick-turn PCB prototyping is our specialty. Demanding project is our advantage.
Tel : +86-136-3163-3671
Fax : +86-755-2301 2705
Email : [email protected]
© 2023 - XPCB Limited All Right Reserve